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In this study, we generalize earlier investigations of Benjamin and Sugiyama & PamKdoussis
devoted to the stability of articulated pipes conveying #uid. The present study additionally
incorporates the translational and rotational elastic foundations in an attempt to answer the
following question: Do the elastic foundations increase the critical velocity of the #uid? It turns
out that the attachment of the elastic foundation along the entire length of the pipe may either
strengthen or weaken the system, with attendant increase or decrease in the critical velocity.
The physical mechanism of the change of type of instability plays a crucial role in deciding
whether or not the elastic foundation increases the critical velocity. If the elastic foundations are
attached within the "rst pipe only, the instability mechanism is by #utter. If the elastic
foundations are attached beyond the "rst pipe, then divergence may occur. The interplay of the
two mechanisms may lead to a decrease of the critical velocity of the system with elastic
foundations. A remarkable nonmonotonous dependence of the critical velocity with respect to
the attachment foundation ratio is established. ( 2000 Academic Press
1. INTRODUCTION

THE VIBRATIONS AND STABILITY of pipes conveying #uid is a subject that attracted numerous
investigators. The present state of the art is summarized in two monographs, by Chen (1987)
and PamKdoussis (1998), in addition to an extensive journal literature. Two review papers are
of prime importance (PamKdoussis 1987; PamKdoussis & Li 1993) providing numerous relevant
references and a critical overview of the subject. This study concentrates on the e!ect of
elastic foundations on the stability behaviour of articulated pipes. The choice of the
articulated pipes is made due to the fact that it is a two-degree-of-freedom system, whose
analytical solution is tractable, and furthermore the model captures some of the character-
istics of the continuous pipes conveying #uid.

The articulated pipes have been studied in several papers. These include the pioneering
contribution by Benjamin (1961a), who studied the stability of a vertical cantilevered system
of articulated pipes, showing that divergence is possible when gravity is taken into account
889}9746/00/050559#16 $35.00/0 ( 2000 Academic Press
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and the #uid is su$ciently heavy. PamKdoussis (1970) found that #exible vertical continuous
pipes never experience divergence. Sugiyama (1981, 1983) demonstrated the stabilizing
e!ect of damping on articulated pipes when a big mass is attached to the portion near the
free end. Furthermore, he showed (Sugiyama 1984) that an additional spring support can
destabilize the system and cause divergence-type instability. Sugiyama & PamKdoussis (1982)
elucidated that the critical velocity of a system of articulated pipes is strongly in#uenced by
the relative length and mass per unit length of the constituting pipes.

An interesting tale of the e!ect of elastic foundation on non-conservative systems relates
to work started in 1972, when the e!ect of the Winkler foundation on the stability of the so
called Beck's column was studied by Smith & Herrmann (1972). They arrived at the
unexpected conclusion that the elastic foundation did not increase the #utter load.
Since there appears to be some mathematical correlation between the column subjected to
the &&follower'' forces and the pipes conveying #uid, one may rightfully question the e!ect of
the elastic foundation on the behaviour of the pipes. The e!ect of an elastic foundation on
the #uid-conveying pipe was investigated in several studies. Stein & Tobriner (1970)
considered the e!ect of internal pressure in the equation of motion and introduced
a Winkler foundation to study the dynamic characteristics of a pipe of in"nite length; in this
case the foundation was necessary to guarantee the equilibrium of the system. Becker et al.
(1978) illustrated the variety of behaviours under the introduction of Winkler and rotatory
foundations acting alone or in concert along the entire length of a cantilevered continuous
pipe. One of their notable results was the stabilizing e!ect of the Winkler foundation in the
pipe conveying #uid, whereas in the model considered by Smith & Herrmann (1972) it has
no in#uence; another interesting conclusion was the much stronger stabilizing e!ect of the
rotatory foundation in contrast to that due to the Winkler foundation. Lottati & Kornecki
(1986) derived numerous results for the case of varying #uid-over-total mass ratio when the
Winkler foundation was present. Their study involved both cantilevered and clam-
ped}clamped pipes. They showed that in both cases, the elastic foundation stabilizes the
system. Other relevant papers include those by Roth & Christ (1962) and Roth (1964). There
is a considerable body of literature on the e!ect of an elastic foundation in the realm of
follower forces, but since these are outside the scope of the present investigation, they will
not be touched upon. This study deals with articulated pipes on partial elastic foundations.
Emphasis is placed on the question of whether the presence of an elastic foundation
increases the critical velocity.
2. BASIC EQUATIONS

Consider a two-degree-of-freedom system consisting of two rigid pipes. The "rst pipe is
connected to the wall through the massless viscoelastic joint A. The two pipes are connected
with the joint B as depicted in Figure 1(a). The angles u

1
and u

2
uniquely determine the

position of the structure. The "rst pipe has a length a, whereas that of the second pipe is b.
Each pipe has a mass per unit length m

p
. An incompressible #uid, with mass per unit length

m
f
, #ows through the pipe with a constant velocity <. The two joints are assumed to have

di!erent restoring moment sti!nesses, R
A

and R
B
, as well as di!erent damping coe$cients,

C
A

and C
B
, respectively. In this study, we generalize the analyses performed by Benjamin

(1961a) and Sugiyama & PamKdoussis (1982). We introduce a homogeneous elastic founda-
tion attached to the pipe for a length l such that 04l4a#b. The foundation is
a combination of the Winkler foundation, with modulus k

w
, and the rotatory foundation

providing a restoring moment with modulus k
r
.



Figure 1. (a) Mathematical model of a two-degree-of-freedom articulated pipe conveying #uid. (b) A free body
diagram.
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2.1. EQUATION OF MOTION

The equation of motion for small vertical displacement of the articulated pipe will be
derived here by considering the dynamic equilibrium of the system. The free-body diagram
of each pipe is depicted in Figure 1(b). The "rst pipe is subjected to (i) the inertial forces of
the pipe f (1)

p
and of the #uid f (1)

f
; (ii) the translational forces f (1)

w
exerted by the Winkler

foundation; (iii) the restoring moment m(1)
r

produced by the rotatory foundation; (iv)
reaction ¹

A
and moment M

A
in the "rst joint; (v) reaction ¹

B
and moment M

B
in the second

joint; and (vi) force F exerted at joint B by the #uid when the #uid changes its direction by
the angle u

2
!u

1
. Analogously, the second pipe is subjected to the inertial forces of the

pipe, f (2)
p

, and of the #uid, f (2)
f

, the Winkler foundation force f (2)
w

, restoring moment m(2)
r

,
and reactions ¹

B
and M

B
. We introduce the local coordinates, namely, x

1
in the "rst pipe

and x
2

in the second pipe. The inertial forces of the pipes read

f (1)
p

"m
p
uK
1
x
1
, f (2)

p
"m

p
(uK

1
a#uK

2
x
2
). (1)

The inertial forces of the liquid are obtained by considering its acceleration relative to the
"xed reference system. The vertical position of a #uid particle inside the "rst pipe with
respect to the local coordinate system x

1
is given by u

1
x
1
, and its velocity by uR

1
x
1
#u

1
<,

while the acceleration is uK
1
x
1
#2uR

1
<. Thus, the Coriolis acceleration 2uR

1
< and the
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angular acceleration uK
1
x
1
are the only contributions in the "rst pipe. In the second pipe, the

vertical position of a #uid particle with respect to the local coordinate system x
2

is given by
u
1
a#u

2
x
2
, so that, along with the Coriolis acceleration 2uR

2
< and the angular acceler-

ation uK
2
x
2
, the translational acceleration uK

1
a has to be included also; hence,

f (1)
f

"m
f
(uK

1
x
1
#2<uR

1
) , f (2)

f
"m

f
(uK

1
a#uK

2
x
2
#2<uR

2
). (2)

The forces exerted by the foundations have the following forms:

f (1)
w

"k
w
u

1
x
1
, f (2)

w
"k

w
(u

1
a#u

2
x
2
),

m(1)
r
"k

r
u
1
, m(2)

r
"k

r
u
2
. (3)

The moment reactions read

M
A
"R

A
u
1
#C

A
uR

1
, M

B
"R

B
(u

2
!u

1
)#C

B
(uR

2
!uR

1
). (4)

The force F is given by the time derivative of the momentum change of the #uid entering
from the "rst pipe to the second one

F"

d

dt
(m

f
<2u

2
dt!m

f
<2u

1
dt)"m

f
<2(u

2
!u

1
). (5)

The translational equilibrium of the "rst pipe gives the transversal reaction in the joint A

¹
A
"F#¹

B
#P

a

0

( f (1)
p

#f (1)
f

) dx
1
#P

l~Sl~aT

0

f (1)
w

dx
1

"F#¹
B
#(m

p
#m

f
)uK

1

a2

2
#2m

f
<uR

1
a#k

w

u
1

2
(l!Sl!aT)2, (6)

where the singularity functions have been used:

Sl!aTn"G
0 for 04l4a,

(l!a)n for a(l4a#b.
(7)

In fact, if the partial foundation extends over the "rst pipe, naturally the integration in the
fourth term should extend over the entire length of the "rst pipe; in this case
l!Sl!aT,l!(l!a). On the other hand, if the length of the partial foundation l is less
than the length a of the "rst pipe, the integral should extend only until x

1
4l. In this case

l!Sl!aT,l. As we see, by adopting the upper limit as l!Sl!aT, this formulation
covers both sub-cases. The translational equilibrium of the second pipe gives the transverse
reaction in the joint B:

¹
B
"P

b

0

( f (2)
p

#f (2)
f

) dx
2
#P

Sl~aT

0

f (2)
w

dx
2

"(m
p
#m

f
)AuK 1ab#uK

2

b2

2 B#2m
f
<uR

2
b#k

wAu1
aSl!aT1#

u
2

2
Sl!aT2B. (8)
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The moment equilibrium of the loads acting on the "rst pipe with respect to the z axis
passing through point A leads to

P
a

0

( f (1)
p

#f (1)
f

)x
1

dx
1
#P

l~Sl~aT

0

( f (1)
w

x
1
#m(1)

r
) dx

1
#M

A
!M

B
#(¹

B
#F)a

"(m
f
#m

p
)CuK 1A

a3

3
#a2bB#uK

2

ab2

2 D#R
A
u

1
#C

A
uR
1
!R

B
(u

2
!u

1
)

!C
B
(uR

2
!uR

1
)#m

f

<uR
1
a2#m

f

<2a(u
2
!u

1
)#2m

f

<uR
2
ab#k

r
u
1
(l!Sl!aT1)

#k
w Gu1C

(l!Sl!aT1)3

3
#a2Sl!aTD#u

2

a

2
Sl!aT2H"0. (9)

The moment equilibrium of the load acting on the second pipe with respect to the z axis
passing through point B results in

P
b

0

( f (2)
p

#f (2)
f

)x
2

dx
2
#P

Sl~aT

0

( f (2)
w

x
2
#m(2)

r
) dx

2
#M

B
"(m

f
#m

p
)AuK 1

ab2

2
#uK

2

b3

3 B
#R

B
(u

2
!u

1
)#C

B
(uR

2
!uR

1
)#m

f
<uR

2
b2#k

r
u
2
Sl!aT1

#k
wAu1

a

2
Sl!aT2#

u
2

3
Sl!aT3B"0. (10)

Equations (9) and (10) are reducible to those of Benjamin (1961a) when no foundation is
present (l"0). It is convenient to introduce the dimensionless quantities

j"
a

b
, k"

m
f

m
f
#m

p

, c"
C

B
JR

B
(m

f
#m

p
)b3
'

d
R
"

R
A

R
B

, d
C
"

C
A

C
B

, q"tS
R

B
(m

f
#m

p
)b3

, (11)

b"
l

b
, v"<S

m
f
b

R
B

, s
r
"

k
r
b

R
B

, s
w
"

k
w
b3

R
B

,

where j is the length ratio, k the mass ratio, d
R

the sti!ness ratio, d
C

the damping ratio, and
b the foundation ratio. With equation (11), equations (9) and (10) yield the following
dimensionless equaions of motion:

j
2

uK
1
#

1

3
uK
2
!cuR

1
#(Jkv#c)uR

2
#Asw

j
2

Sb!jT2!1Bu1

#A
s
w
3

Sb!jT3#s
r
Sb!jT1#1Bu2

"0,

A
j3
3
#j2BuK 1#

j
2

uK
2
#[c(d

C
#1)#Jkvj2]uR

1
#(2Jkvj!c)uR

2

#Gsr (b!Sb!jT1)#s
wC

1

3
(b!Sb!jT1)3#b2Sb!jT1D!jv2#d

K
#1Hu1

#Asw
j
2

Sb!jT2#jv2!1Bu2
"0, (12)

where ( )) denotes the di!erentiation with respect to the dimensionless time q.
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2.2. CHARACTERISTIC EQUATION

We seek a solution in the form

u
k
"A

k
esq; k"1, 2. (13)

Substituting equation (13) into (12) and applying the condition for the existence of a
nontrivial solution (+A2

j
O0), we obtain the characteristic equation in the form

a
0
s4#a

1
s3#a

2
s2#a

3
s#a

4
"0. (14)

In the case when the foundation length is limited to the "rst pipe (04b4j) the
coe$cients a

j
are denoted as a(1)

j
and have the following expressions:

a(1)
0
" 1

36
j2(3#4j),

a(1)
1
"1

3
[j2(1#j)Jkv#(1#j)3c#d

C
c],

a(1)
2
"1

6
jv2[j(!3#6k)!2]#Jkcv[d

C
#(1#j)2)]

#1
9

b3s
w
#d

C
c2#1

3
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r
#1

3
d
R
#1

3
(1#j)3,

a(1)
3
"!jJkv3#Jkv C

1

3
b3s

w
#bs

r
#(1#j)2#d

RD
#cA

1

3
b3s

w
#bs

r
#d

C
#d

RB,
a(1)
4
"1

3
b3s

w
#bs

r
#d

R
. (15)

If the elastic foundation is also attached, partially or fully, to the second pipe (b'j), the
coe$cients of equation (14) are denoted as a(2)

j
; they read

a(2)
0
"a(1)

0
,

a(2)
1
"a(1)

1
,

a(2)
2
"a(1)

2
#1

18
(b!j)M6s

r
(j3#3j2!1)#s

w
(b!j)[2b(j3#3j2!1)!j(2j3#6j2#9j#4)]N,

a(2)
3
"a(1)

3
#1

3
(b!j)[v(j2!1)Jk#d

C
c] [3s

r
#s

w
(b2!bj!j)]!s

w
jv (b!j)2(j#1),

a(2)
4
"a(1)

4
#s

r
(b!j)(d

R
!jv2#js

r
)# 1

36
s
w
(b!j)2[12(b!j)d

R
!6jv2(2b#j)

!s
w
j2(b!j)(3b#j)]#1

3
js

r
s
w
(b3!2bj2#j3) . (16)

2.3. STABILITY ANALYSIS

The roots of equation (14) may be expressed in the complex form s"p#iq where p stands
for the dimensionless damping and q for the dimensionless oscillatory eigenfrequency; i is
the imaginary unit. The system is stable when p(0. The system is dynamically unstable
when p'0, while qO0, while it is statically unstable when p'0 and q"0. The boundary
of dynamic instability (#utter) is determined by the Hurwitz condition

a
1
a
2
a
3
!a

0
a2
3
!a2

1
a
4
"0. (17)
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Equation (17) leads to a complete polynomial of sixth degree in terms of the unknown
velocity v. Note that the order of the polynomial is not a!ected by the presence of the
foundation, whereas the particularization to the case of the so called &&follower'' forces
[m

f
"0 in equation (11) and k"0 in equation (12)] makes equation (17) a linear poly-

nomial of the unknown v2"Pb/R
2
, where P is the amplitude of the follower force applied

at the free end.
The limit for static instability (divergence) is given by the condition of vanishing

characteristic root

a
4
"0. (18)

Note that equation (18) applies only for a(2)
4
"0, i.e., in the case when the partial foundation

extends over the joint B (b'j). In fact, a(1)
4

, corresponding to the case when the elastic
foundation is limited solely to the "rst pipe, is always positive. Thus, divergence cannot arise
when the partial foundation is con"ned to the "rst pipe. Moreover, the static instability
limit is una!ected by the mass ratio k and by the damping ratio d

C
and the divergence

critical velocity squared is easily obtained, as in the coe$cient a(2)
4

the term v appears only as
a square; thus,

v2
#3
"

36a(1)
4
#s

w
(b!j)3[12d

R
!s

w
j2(3b#j)]#12js

r
s
w
(b3!2bj2#j3)#36s

r
(b!j) (d

R
#js

r
)

36s
r
(b!j)j#s

w
6j (2b3!3b2j#j3)

.

(19)

In particular, if no foundation is present only #utter instability arises (Benjamin, 1961a),
whereas both kinds of instability are possible when a foundation is fully attached to the
pipes. Note that the critical velocity given in equation (19) approaches a "nite value for
jPR only when the rotatory foundation alone is present. For example, for a fully attached
purely rotatory foundation (s

w
"0 and b"j#1) equation (19) leads to

v2
#3
"

d
R
#s

r
(1#d

R
#j#s

r
j)

s
r
j

, (20)

whose limit for jPR is the sought critical velocity v
#3
"Js

r
#1.

3. FULL OR NO ELASTIC FOUNDATION

Let us concentrate on the two limiting cases: (a) elastic foundations extend over the entire
length of the system, or (b) no elastic foundation is present [already considered by Sugiyama
& PamKdoussis (1982)]. We investigate the e!ect of the length ratio j"l/b on the critical #ow
velocity. Figures 2 and 3 illustrate the critical velocity in the range 0)14j410; a thin line
is associated with #utter instability, whereas a thick line refers to divergence.

The case of a small mass ratio (k"0)001), characteristic of pipe conveying gas, is
considered in Figure 2(a, b). Figure 2(a) shows that the presence of Winkler foundation with
dimensionless modulus s

w
"5 acting alone (dashed line denoted by 2) does not change

appreciably the critical velocity of the pipes without any foundation (dotted line denoted by 1).
Indeed, curves 1 and 2 in Figure 2(a) practically coincide until j reaches a value of 5; even for
j"10 the di!erence is only 5)5%. Yet, the presence of a rotatory foundation with s

r
"1

(curves 3 and 4) introduces both qualitative and quantitative changes in the stability
characteristics, as follows. (i) Divergence-type instability arises and governs the system
behaviour for j'1)047, when the rotatory foundation is the only one present (curve 3).



Figure 2. Dimensionless critical velocity as a function of the length ratio j (c"0)001 and k"0)001). Thick
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Note that beyond j"1)047, #utter does not occur. The same happens in the region
j'1)096, when both kinds of foundations support the pipe with s

w
"s

r
"1 (curve 4). Here

too, beyond j"1)096 #utter instability is ruled out. (ii) The minimum value of the critical
velocity for which the pipe without elastic foundations undergoes #utter is v

#3
"1)547 and is

experienced for j"1)202 (curve 1). Their counterparts, in the presence of rotatory founda-
tion with s

r
"1 (curves 3 and 4) are v

#3
"2)078 and j"0)724, respectively. (iii) Increasing

the length ratio, the e!ects due to the rotatory foundation become larger. For example, at
j"10 the pipe without foundation loses stability through #utter at v

#3
"2)814. Yet, when

only the rotatory foundation is present, the instability occurs in the form of divergence at
v
#3
"1)571, for s

r
"1 (curve 3). When both the rotatory and the Winkler foundations

(s
r
"1, s

w
"1, curve 4) are present the divergence velocity at j"10 is v

#3
"4)019. Thus,

elastic foundations can either decrease or increase the critical velocity associated with the
foundationless system.

The case of sti!er foundation (s
w
"s

r
"10), for the same mass ratio k"0)001 as in

Figure 2(a), is illustrated in Figure 2(b). In this case, the Winkler foundation acting alone
(dashed line, curve 2) also introduces the divergence-type instability (for j'7)585). Fur-
thermore, the transition from #utter to divergence takes place through a jump in the critical
velocity, from v

#3
"2)692 to "4)876. Comparing Figures 2(a) and 2(b), we note that for the

case of sti!er foundation, the region ruled by divergence becomes larger.
Figure 3 portrays the system behaviour for k"0)25. In this setting, when any kind of

foundation is present, the extent of the region governed by divergence is larger than the
corresponding case with k"0)001.

The presence of a combined full foundation leads to an increase in the critical velocity as
opposed to the foundationless system in all the analysed cases, including those for higher
values of k (not reported here). Furthermore, destabilization in the presence of a purely
Winkler foundation or purely rotatory foundation occurs when such an introduction of the
elastic foundation changes the instability mechanism from #utter to divergence. The purely
rotatory foundation decreases the critical velocity if the length ratio j"a/b is beyond



Figure 3. Dimensionless critical velocity as a function of the length ratio j (c"0)001 and k"0)25). Thick lines:
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a certain value, j*. Such a transitional value j* is found as an intersection of curve 1 with
curve 3, in Figure 2(a) corresponding to j*"2)754.

This remarkable phenomenon of having a smaller critical velocity in the system on an
elastic foundation than without it is not unlike the celebrated result that was "rst reported
byBenjamin (1961b) and by Gregory & PamKdoussis (1966b). Benjamin writes (p. 493): &&A
remarkable phenomenon2could be observed when the pipes were freely suspended and
the #ow rate was large yet insu$cient for instability, though being in fact considerably
greater than the critical value for the simply supported case. If then the outlet end was
lightly touched with a "nger, the chain promptly buckled. This event was always startling to
an unsuspecting observer because the system appeared quite inert before the trial and
because it buckled towards the contact.'' PamKdoussis & Li (1993) describe this unexpected
pattern as follows: &&A strange characteristic of this system is that, at high #ow velocities but
before the onset of #utter, supporting the downstream end of the cantilever by one's "nger
or a pencil causes if to become unstable by divergence. So, here is a case where added support
causes instability!'' (italics by PamKdoussis & Li, 1993). For an interesting discussion on this
paradoxical behaviour the reader may also consult with the paper by Thompson (1982). In
our study too, an &&unsuspecting observer'' could anticipate the increase of the critical
velocity due to the elastic foundations, and so it happens some times; yet it may decrease in
other cases. This phenomenon takes place due to the change in the instability mechanism:
a foundationless system loses its stability via #utter, while the system on the elastic
foundation may lose its stability by divergence. The analogy with the works of Benjamin
(1961b) and Gregory & PamKdoussis (1966b) is not complete: in our case the presence of a full
elastic foundation may not lead to divergence, for some combinations of the parameters (see
thin line portions in Figures 2 and 3). Only in this case are the results as one would
anticipate: the elastic foundation increases the critical velocity (Figures 2 and 3). Thus, the
elastic foundation is associated with a richer behaviour than introduction of the elastic
support (Sugiyama 1984); the latter can be represented mathematically as a product of the
Winkler modulus k

w
with the Dirac delta function d(l).



Figure 4. Pipe on purely Winkler foundation: dimensionless critical velocity as a function of the foundation
attachment ratio a (c"0)001, k"0)001):** s
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4. EFFECT OF A PARTIAL FOUNDATION

For a better understanding on the contribution of each type of foundation on the stability of
the pipe, the cases of purely Winkler foundation as well as purely rotatory foundation will
be considered "rst. Finally, the general case of combined foundations will be addressed.
A new dimensionless variable is used for the representation of the results, namely the
foundation attachment ratio a"l/(a#b), de"ned in the range [0; 1]; the zero value is
associated with a system without foundation, whereas the value of unity refers to the case of
fully attached foundation that we have studied in the foregoing. For speci"city, we limit
ourselves to pipes of the same length (a"b, j"1). Again, a thin line is associated with
#utter instability, whereas a thick line refers to divergence.

4.1. PARTIAL WINKLER FOUNDATION

The case of a Winkler foundation acting alone (s
w
O0, s

r
"0) is considered "rst. Figures 4

and 5 depict the critical velocity versus the attachment ratio a for the mass ratios k"0)001
and 0)3, respectively. The results are given for several values of the dimensionless modulus
of the Winkler foundation (s

w
"1, s

w
"10, s

w
"20).

In the system with k"0)001 (Figure 4), only #utter instability occurs. Surprisingly, the
critical velocity turns out to be a non-monotonous function of the attachment ratio, so that
an increase of the region with foundation may lead to a decrease of the critical velocity. The
minimum values of the critical velocity for s

w
"1 (solid line), s

w
"10 (dashed line) and

s
w
"20 (dash-dotted line) are 2)8, 12)6 and 15)9%, respectively, lower than the critical

velocity representing the case without foundation (a"0). This is another case in which
a seeming strengthening of the system, by introduction of a partial foundation, may lead to
destabilization. Moreover, contrary to the case discussed in Section 3, such a destabilization



Figure 5. Pipe on purely Winkler foundation: dimensionless critical velocity as a function of the foundation
attachment ratio a (c"0)001, k"0)3). Thick line: divergence. Thin lines: #utter: ** s

w
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occurs without a change of the instability mechanism. Note also that the critical velocity is
a nonmonotonous function of the dimensionless modulus s

w
.

Figure 5 shows that a larger mass ratio (k"0)3) introduces a divergence-type instability
for the attachment ratios a greater than a certain value depending on the other parameters
of the system. Moreover, the region in which divergence is e!ective expands when the
nondimensional modulus s

w
increases from 1 to 20. Note that the non-monotonous

behavior characteristic of the case k"0)001 (Figure 4) is not present anymore in the region
governed by #utter.

4.2. PARTIAL ROTATORY FOUNDATION

The critical velocities plotted in Figures 6 and 7 refer to the presence of a partial rotatory
foundation (s

r
O0, s

w
"0). Figure 6 shows that divergence may be present also for small

mass ratio (k " 0)001), unlike the case of purely Winkler foundation (Figure 4). Moreover,
the remarkable stabilizing e!ect due to a rotatory foundation takes place when its length
passes the joint B (a'0)5). The critical velocity for a"0)76 and s

r
"20 is v

#3
"4)901

(214% of the case without foundation). Nevertheless, the unexpected result of a decreasing
dependence of the critical velocity on the foundation ratio is present for a(0)5, a(0)09
and a(0)05 when s

r
"1, s

r
"10 and s

r
"20, respectively.

For a larger mass ratio, namely k"0)3 (Figure 7), the divergence instability regions are
enhanced. In this setting, the destabilization e!ect is not present, although the strengthening
e!ect in case s

r
"1, a(0)5 is hardly noticeable.

4.3. COMBINED PARTIAL FOUNDATIONS

The stability of an articulated pipe on a generalized foundation, where the restoring forces
and the restoring moments act simultaneously is of most interest. Figures 8 and 9 depict the



Figure 6. Pipe on purely rotatory foundation: dimensionless critical velocity as a function of the foundation
attachment ratio a (c"0)001, k"0)001). Thick line: divergence. Thin lines: #utter: ** s
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Figure 7. Pipe on purely rotatory foundation: dimensionless critical velocity as a function of the foundation
attachment ratio a (c"0)001, k"0)3). Thick line: divergence. Thin lines: #utter:** s
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critical velocity as a function of the foundation ratio a, for several values of the mass ratio k,
while the nondimensional foundation moduli s

w
and s

r
are "xed. The stabilizing e!ect of the

mass ratio is evident. In the #utter region (thin lines), the non-monotonous behaviour of the
critical velocity versus the foundation ratio is present for k(0)3, whereas for larger values



Figure 8. Pipe on combined foundation with s
w
"s

r
"1: dimensionless critical velocity as a function of the

foundation attachment ratio a (c"0)001). Thick line: divergence. Thin lines: #utter.

Figure 9. Pipe on combined foundation with s
w
"10, s

r
"10: dimensionless critical velocity as a function of the

foundation attachment ratio a (c"0)001). Thick line: divergence. Thin lines: #utter.
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of k (k"0)5 and 1) an increase in a leads to an increase of the critical velocity. In the
divergence region (thick lines), in all the calculated settings an increment of the length of the
foundation results in a decrement of the critical velocity. The maximum value of the critical
velocity corresponds to the transition point between #utter and divergence instability
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mechanisms. As the mass ratio increases, the transition point occurs at smaller values of a,
thus increasing the range of the divergence phenomenon. No divergence is present in the
case of small mass ratio (k"0)001) associated with a small value of the nondimensional
foundation moduli (Figure 8). This is in agreement with curve 2 in Figures 2(a) and 2(b).

5. CONCLUSION

We observe that the articulated pipe on partial elastic foundation, although a simple
system, exhibits a rich variety of behaviours. Full elastic foundations of either kind increase
the critical velocity in the case where stability is lost by #utter. Yet, if the instability arises
with divergence, the critical velocity of the pipe with elastic foundations may be smaller
than that in the unsupported pipe. The introduction of partial elastic foundation may
destabilize the system, not unlike the previous "nding by Benjamin (1961b) and Gregory
and PamKdoussis (1966b), where destabilization occurs by touching the pipe (without elastic
foundations) with the "nger. If the elastic foundation is con"ned within the "rst pipe, the
system experiences #utter exclusively; yet when the attachment goes beyond the "rst pipe,
divergence instability may occur. The change of the stability mechanism leads to interesting
phenomena, illustrated by numerous results.
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